Intensity harmonization techniques influence radiomics features and radiomics-based predictions in sarcoma patients

Autor: Amandine Crombé, Michèle Kind, David Fadli, François Le Loarer, Antoine Italiano, Xavier Buy, Olivier Saut
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Scientific Reports, Vol 10, Iss 1, Pp 1-13 (2020)
Druh dokumentu: article
ISSN: 2045-2322
74794744
DOI: 10.1038/s41598-020-72535-0
Popis: Abstract Intensity harmonization techniques (IHT) are mandatory to homogenize multicentric MRIs before any quantitative analysis because signal intensities (SI) do not have standardized units. Radiomics combine quantification of tumors’ radiological phenotype with machine-learning to improve predictive models, such as metastastic-relapse-free survival (MFS) for sarcoma patients. We post-processed the initial T2-weighted-imaging of 70 sarcoma patients by using 5 IHTs and extracting 45 radiomics features (RFs), namely: classical standardization (IHTstd), standardization per adipose tissue SIs (IHTfat), histogram-matching with a patient histogram (IHTHM.1), with the average histogram of the population (IHTHM.All) and plus ComBat method (IHTHM.All.C), which provided 5 radiomics datasets in addition to the original radiomics dataset without IHT (No-IHT). We found that using IHTs significantly influenced all RFs values (p-values:
Databáze: Directory of Open Access Journals