Propagation Speeds of Relativistic Conformal Particles from a Generalized Relaxation Time Approximation
Autor: | Alejandra Kandus, Esteban Calzetta |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Entropy, Vol 26, Iss 11, p 927 (2024) |
Druh dokumentu: | article |
ISSN: | 1099-4300 36705462 |
DOI: | 10.3390/e26110927 |
Popis: | The propagation speeds of excitations are a crucial input in the modeling of interacting systems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory for massless particles, which is approximated by a generalized relaxation time approximation (RTA) where the relaxation time depends on the energy of the particles involved. We seek a solution of the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which generalizes the Chapman–Enskog (Ch-En) solution to the RTA. If developed to all orders, this would yield an asymptotic solution to the kinetic equation; we restrict ourselves to an approximate solution by truncating the Ch-En series to the second order. Our generalized Ch-En solution contains undetermined space-time-dependent parameters, and we derive a set of dynamical equations for them by applying the moments method. We check that these dynamical equations lead to energy–momentum conservation and positive entropy production. Finally, we compute the propagation speeds for fluctuations away from equilibrium from the linearized form of the dynamical equations. Considering relaxation times of the form τ=τ0(−βμpμ)−a, with −∞ |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |