Popis: |
La teoría de los procesos estocásticos permite estudiar sistemas o fenómenos que evolucionan en el tiempo de forma aleatoria y que varían en un conjunto bien definido de estados, son muy diversas las áreas en las que sistemas de este tipo están presentes, por ejemplo, en economía, meteorología y en el desarrollo de múltiples procesos cotidianos y no tan cotidianos. De ahí la relevancia de estudiar este tipo de procesos y la teoría alrededor de ellos, para que, así como con el estudio de la probabilidad se pueda generar herramientas útiles en la toma de decisiones. En el presente trabajo se estudian el problema de la ruina del jugador en su versión clásica y otra modificada, como caminatas aleatorias, la cuales son un caso particular de las Cadenas de Márkov, con el propósito de explorar las propiedades de las caminatas que modelan a ambas versiones e interpretarlas en su respectiva simulación en el lenguaje de programación Python. Al mismo tiempo abordar el uso de generadores de números pseudoaleatorios, conceptos de recursividad y listas dinámicas definidas como una clase con sus respectivos métodos, objetivos que fueron alcanzados. Como principales resultados están la reproducción de las trayectorias que describen eventos simples de la caminata aleatoria y la estimación de las probabilidades de ruina y duración esperada propias de cada juego. Este es un problema clásico del que es posible partir para estudiar conceptos y propiedades de los procesos estocásticos y de programación. |