Design of Diamond Power Devices: Application to Schottky Barrier Diodes

Autor: Nicolas Rouger, Aurélien Maréchal
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Energies, Vol 12, Iss 12, p 2387 (2019)
Druh dokumentu: article
ISSN: 1996-1073
DOI: 10.3390/en12122387
Popis: Owing to its outstanding electro-thermal properties, such as the highest thermal conductivity (22 W/(cm∙K) at room temperature), high hole mobility (2000 cm2/(V∙s)), high critical electric field (10 MV/cm) and large band gap (5.5 eV), diamond represents the ultimate semiconductor for high power and high temperature power applications. Diamond Schottky barrier diodes are good candidates for short-term implementation in power converters due to their relative maturity. Nonetheless, diamond as a semiconductor for power devices leads to specificities such as incomplete dopant ionization at room temperature and above, and the limited availability of implantation techniques. This article presents such specificities and their impacts on the optimal design of diamond Schottky barrier diodes. First, the tradeoff between ON-state and OFF-state is discussed based on 1D analytical models. Then, 2D numerical studies show the optimal design of floating metal rings to improve the effective breakdown voltage. Both analyses show that the doping of the drift region must be reduced to reduce leakage currents and to increase edge termination efficiency, leading to better figures of merit. The obtained improvements in breakdown voltage are compared with fabrication challenges and the impacts on forward voltage drop.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje