Autor: |
Pengcheng Zhu, Li Ye, Xiaolei Li, Tianxing Wang, Yao Zhong, Lin Zhuang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
APL Materials, Vol 12, Iss 9, Pp 091110-091110-9 (2024) |
Druh dokumentu: |
article |
ISSN: |
2166-532X |
DOI: |
10.1063/5.0225168 |
Popis: |
Hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs) are crucial for renewable energy production. Developing stable, cost-effective, and highly catalytic HER and OER electrocatalysts is paramount. In this study, a combination of hydrothermal synthesis and annealing was used to fabricate nickel sulfide (Ni3S2) particle–embedded nanotubes supported on nickel (Ni) foam (Ni3S2 PN/NF). The Ni3S2 PN/NF structures featured a highly branched morphology with a large specific surface area, surpassing that of conventional Ni metal nanotubes. This design increased the number of reactive sites and enhanced the charge-transfer process. The Ni foam substrate expanded the contact area of Ni3S2, thereby improving conductivity and facilitating the adsorption/desorption of intermediates on the Ni3S2 surface. Density functional theory calculations showed that the electronic structure of Ni3S2 provides excellent conductivity. Moreover, the multi-branched structure and inherent conductivity of the NiS nanomaterials enhanced the Ni3S2 PN/NF performance in 1M KOH, with overpotentials of 87 and 210 mV with iR compensation at 10 mA cm−2 for the HER and OER, respectively. The synthesized Ni3S2 PN/NF also exhibited robust durability for 20 h. These results demonstrate that Ni3S2 PN/NF is an excellent catalyst for both HER and OER. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|