Autor: |
Reza Esmaillie, Michael Ignarski, Katrin Bohl, Tim Krüger, Daniyal Ahmad, Lisa Seufert, Bernhard Schermer, Thomas Benzing, Roman-Ulrich Müller, Francesca Fabretti |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
iScience, Vol 22, Iss , Pp 466-476 (2019) |
Druh dokumentu: |
article |
ISSN: |
2589-0042 |
DOI: |
10.1016/j.isci.2019.11.039 |
Popis: |
Summary: The cellular response to hypoxia is crucial to organismal survival, and hypoxia-inducible factors (HIF) are the key mediators of this response. HIF-signaling is central to many human diseases and mediates longevity in the nematode. Despite the rapidly increasing knowledge on RNA-binding proteins (RBPs), little is known about their contribution to hypoxia-induced cellular adaptation. We used RNA interactome capture (RIC) in wild-type Caenorhabditis elegans and vhl-1 loss-of-function mutants to fill this gap. This approach identifies more than 1,300 nematode RBPs, 270 of which can be considered novel RBPs. Interestingly, loss of vhl-1 modulates the RBPome. This difference is not primarily explained by protein abundance suggesting differential RNA-binding. Taken together, our study provides a global view on the nematode RBPome and proteome as well as their modulation by HIF-signaling. The resulting RBP atlas is also provided as an interactive online data mining tool (http://shiny.cecad.uni-koeln.de:3838/celegans_rbpome). : Biological Sciences; Molecular Biology; Molecular Interaction; Molecular Network; Integrative Aspects of Cell Biology; Proteomics Subject Areas: Biological Sciences, Molecular Biology, Molecular Interaction, Molecular Network, Integrative Aspects of Cell Biology, Proteomics |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|