Autor: |
Priscila R. Guerra, Fatemeh Ajalloueian, Shaodong Wei, Katja Ann Kristensen, Martin Iain Bahl, Anja Boisen, Tine Rask Licht |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-022-25769-z |
Popis: |
Abstract Drug-loaded electrospun nanofibers are potential drug carrier systems that may optimize disease treatment while reducing the impact on commensal microbes. The feasibility of streptomycin-loaded pullulan nanofibers fabricated from a green electrospinning procedure using water as the solvent was assessed. We conducted a rat study including a group treated with streptomycin-loaded nanofibers (STR-F, n = 5), a group treated with similar concentrations of streptomycin in the drinking water (STR-W, n = 5), and a non-treated control group (CTR, n = 5). Streptomycin was successfully loaded into nanofibers and delivered by this vehicle, which minimized the quantity of the drug released in the ileal compartment of the gut. Ingested streptomycin-resistant E. coli colonized of up to 106 CFU/g feces, revealing a selective effect of streptomycin even when given in the low amounts allowed by the nanofiber-based delivery. 16S amplicon sequencing of the indigenous microbiota revealed differential effects in the three groups. An increase of Peptostreptococcaceae in the cecum of STR-F animals may indicate that the fermentation of nanofibers directly or indirectly promoted growth of bacteria within this family. Our results elucidate relevant properties of electrospun nanofibers as a novel vehicle for delivery of antimicrobials to the large intestine. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|