Accurate microRNA target prediction correlates with protein repression levels

Autor: Simossis Victor A, Kourtis Kornilios, Koukis Evangelos, Goumas George, Giannopoulos George, Dalamagas Theodore, Reczko Martin, Papadopoulos Giorgio L, Alexiou Panagiotis, Maragkakis Manolis, Sethupathy Praveen, Vergoulis Thanasis, Koziris Nectarios, Sellis Timos, Tsanakas Panagiotis, Hatzigeorgiou Artemis G
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Zdroj: BMC Bioinformatics, Vol 10, Iss 1, p 295 (2009)
Druh dokumentu: article
ISSN: 1471-2105
DOI: 10.1186/1471-2105-10-295
Popis: Abstract Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at http://www.microrna.gr/microT
Databáze: Directory of Open Access Journals