SEKV-E: Parameter Extractor of Simplified EKV I-V Model for Low-Power Analog Circuits

Autor: Hung-Chi Han, Antonio D'Amico, Christian Enz
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: IEEE Open Journal of Circuits and Systems, Vol 3, Pp 162-167 (2022)
Druh dokumentu: article
ISSN: 2644-1225
DOI: 10.1109/OJCAS.2022.3179046
Popis: This paper presents the open-source Python-based parameter extractor (SEKV-E) for the simplified EKV (sEKV) model, which enables the modern low-power circuit designs with the inversion coefficient design methodology. The tool extracts the essential sEKV parameters automatically from the given $I$ - $V$ curves using the direct extraction and the multi-stage optimization process. It also handles the overfitting issue because of non-linear least squares. Moreover, this work demonstrates the SEKV-E as a universal tool by widely applying it to different silicon technologies, temperatures, dimensions, and back-gate voltages.
Databáze: Directory of Open Access Journals