Autor: |
B. Putz, O. Milkovič, G. Mohanty, R. Ipach, L. Pethö, J. Milkovičová, X. Maeder, T.E.J. Edwards, P. Schweizer, M. Coduri, K. Saksl, J. Michler |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Materials & Design, Vol 218, Iss , Pp 110675- (2022) |
Druh dokumentu: |
article |
ISSN: |
0264-1275 |
DOI: |
10.1016/j.matdes.2022.110675 |
Popis: |
We report for the first-time combinatorial synthesis of thin film metallic glass libraries via magnetron co-sputtering at the limit of crystallinity. Special care was taken to prepare extremely pure CuZr films (1–2 µm thickness) with large compositional gradients (Cu18.2Zr81.8 to Cu74.8Zr25.2) on X-ray transparent polymer substrates in high-vacuum conditions. Combined mapping of atomic structure (synchrotron radiation) and chemical composition (X-ray fluorescence spectroscopy) revealed that over the entire composition range, covering multiple renowned glass formers, two phases are present in the film. Our high-resolution Synchrotron approach identified the two phases as: untextured amorphous Cu51Zr14 (cluster size 1.3 nm) and textured, nanocrystalline α-Zr (grain size 1–5 nm). Real space HR-STEM analyses of a representative composition substantiate our XRD results. Determined cluster and grain sizes are below the resolution limit of conventional laboratory-scale X-ray diffractometers. The presented phase mixture is not permitted in the Cu-Zr phase diagram and contrary to existing literature. The phase ratio follows a linear trend with amorphous films on the Cu-rich side and increasing amounts of α-Zr with increasing Zr content. While cluster size and composition of the amorphous phase remain constant thorough the compositional gradient, crystallite size and texture of the nanocrystalline α-Zr change as a function of Zr content. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|