Autor: |
Evelia R. GARCÍA BARROSO, Juan Ignacio GARCÍA-GARCÍA, Luis José SANTANA SÁNCHEZ, Alberto VIGNERON-TENORIO |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Electronic Research Archive, Vol 31, Iss 4, Pp 2213-2229 (2023) |
Druh dokumentu: |
article |
ISSN: |
2688-1594 |
DOI: |
10.3934/era.2023113?viewType=HTML |
Popis: |
In their paper on the embeddings of the line in the plane, Abhyankar and Moh proved an important inequality, now known as the Abhyankar-Moh inequality, which can be stated in terms of the semigroup associated with the branch at infinity of a plane algebraic curve. Barrolleta, García Barroso and Płoski studied the semigroups of integers satisfying the Abhyankar-Moh inequality and call them Abhyankar-Moh semigroups. They described such semigroups with the maximum conductor. In this paper we prove that all possible conductor values are achieved for the Abhyankar-Moh semigroups of even degree. Our proof is constructive, explicitly describing families that achieve a given value as its conductor. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|