Applications of Pose Estimation in Human Health and Performance across the Lifespan

Autor: Jan Stenum, Kendra M. Cherry-Allen, Connor O. Pyles, Rachel D. Reetzke, Michael F. Vignos, Ryan T. Roemmich
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Sensors, Vol 21, Iss 21, p 7315 (2021)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s21217315
Popis: The emergence of pose estimation algorithms represents a potential paradigm shift in the study and assessment of human movement. Human pose estimation algorithms leverage advances in computer vision to track human movement automatically from simple videos recorded using common household devices with relatively low-cost cameras (e.g., smartphones, tablets, laptop computers). In our view, these technologies offer clear and exciting potential to make measurement of human movement substantially more accessible; for example, a clinician could perform a quantitative motor assessment directly in a patient’s home, a researcher without access to expensive motion capture equipment could analyze movement kinematics using a smartphone video, and a coach could evaluate player performance with video recordings directly from the field. In this review, we combine expertise and perspectives from physical therapy, speech-language pathology, movement science, and engineering to provide insight into applications of pose estimation in human health and performance. We focus specifically on applications in areas of human development, performance optimization, injury prevention, and motor assessment of persons with neurologic damage or disease. We review relevant literature, share interdisciplinary viewpoints on future applications of these technologies to improve human health and performance, and discuss perceived limitations.
Databáze: Directory of Open Access Journals