Autor: |
Xinyu Zhang, Liuyi Ren, Shenxu Bao, Yimin Zhang, Guohao Chen, Bo Chen |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Minerals, Vol 14, Iss 7, p 694 (2024) |
Druh dokumentu: |
article |
ISSN: |
2075-163X |
DOI: |
10.3390/min14070694 |
Popis: |
Flotation-introduced nanobubbles were expected to be an efficient and economical method to recover fine muscovite. This study aimed to explore the mechanism of the change appearing in flotation after introducing nanobubbles through micro-flotation, particle vision and measurement, flotation kinetics, and induction time measurement. The results of micro-flotation, which respectively feed muscovite or muscovite pretreated with nanobubbles in different concentrations of dodecylamine (DDA), were fitted with four flotation kinetic models using Origin. Different methods were used to examine how the introduction of nanobubbles affected the flotation process. The results showed that nanobubbles improved both the flotation rate and recovery of muscovite. Nanobubbles played different roles in different stirring intensities. At low stirring intensity, nanobubbles did not perform well. In suitable stirring intensity, nanobubbles helped particles aggregate and improved the collision probability between bubbles and minerals. However, at high stirring intensity, shear forces caused by ultra-high fluid velocities could disrupt particle aggregation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|