Convex radial solutions for Monge-Ampère equations involving the gradient

Autor: Zhilin Yang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematical Biosciences and Engineering, Vol 20, Iss 12, Pp 20959-20970 (2023)
Druh dokumentu: article
ISSN: 1551-0018
DOI: 10.3934/mbe.2023927?viewType=HTML
Popis: This paper deals with the existence and multiplicity of convex radial solutions for the Monge-Amp$ \grave{\text e} $re equation involving the gradient $ \nabla u $: $ \begin{cases} \det (D^2u) = f(|x|, -u, |\nabla u|), x\in B, \\ u|_{\partial B} = 0, \end{cases} $ where $ B: = \{x\in \mathbb R^N: |x| < 1\} $. The fixed point index theory is employed in the proofs of the main results.
Databáze: Directory of Open Access Journals