Popis: |
Xin Tang School of Law, Chongqing University, Chongqing, 400044, People’s Republic of ChinaCorrespondence: Xin Tang, Email xintang@cqu.edu.cnIntroduction: Since the reform and opening up, the social economy has developed rapidly. The competition in the employer market is fierce, which leads leaders to have strict requirements for workers, and workplace stress increases. The blind pursuit of corporate economic benefits has led to the neglect of workers’ mental health. Employee retaliation against the corporate occurs frequently. The perfection of the legal system for occupational mental health protection is imminent.Methods: Based on the above questions, this study first introduces the research background, significance, and purpose in the introduction. Second, in the literature review, the current status of research is sorted out, the problems in the existing research are summarized, and the innovation points of this study are highlighted. Then, in the method section, the algorithms and models used here are introduced, including convolutional neural networks, long short-term memory networks, and the design of interview processes. Finally, the results of the questionnaire survey and the experimental test are analyzed.Results: (1) There is further room for optimization of intelligent lie recognition technology. (2) The employee assistance program system can effectively solve the mental health problems of employees. (3) There is a need to expand the legislative mechanism for workers’ mental health protection at the legal level.Discussion: This study mainly explores the loopholes of occupational mental health protection under the formulation of laws and regulations. Intelligent lie recognition technology reduces workers’ adverse physical and mental health risks due to work. It is dedicated to protecting workers’ legitimate rights and interests from the formulation of laws and regulations.Keywords: workplace stress, intelligent lie recognition, employee assistance program system, legal protection, occupational mental health |