Autor: |
Caizhen Liang, Qingshan Shi, Jin Feng, Junwei Yao, Hui Huang, Xiaobao Xie |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nanomaterials, Vol 12, Iss 11, p 1814 (2022) |
Druh dokumentu: |
article |
ISSN: |
2079-4991 |
DOI: |
10.3390/nano12111814 |
Popis: |
In this work, an innovative nano-carbon material (N-CM) adsorbent was reported for exploring its adsorption behaviors toward cationic methylene blue (MB) and anionic reactive blue 19 (RB19) pollutants. The proposed N-CM was synthesized by a one-step solvothermal treatment of citric acid and zinc gluconate small precursors. N-CM consists of nanosheets that have an advantageous specific surface area, large sp2/sp3 hybridized domains, and abundant nitrogen/oxygen-containing surface functional groups. The synergistic effects of these features are conducive to the MB and RB19 adsorption. Different from anionic RB19 adsorption (79.54 mg/g) by the cooperative π-π stacking and hydrogen bonding, cationic MB adsorbed onto N-CM mainly by the electrostatic attraction at the natural pH solution (> pHpzc), with an adsorption capacity up to 118.98 mg/g. Interestingly, both MB and RB19 adsorption conformed to the pseudo-second order kinetic (R2 ≥ 0.995) and Langmuir isothermal (R2 ≥ 0.990) models, accompanied by similar maximum monolayer adsorption capacities of 120.77 and 116.01 mg/g, respectively. Their adsorption processes exhibited spontaneously endothermic characteristics. Moreover, N-CM showed superior selective capability toward MB in different mixed dye systems, with high removal efficiencies of 73–89%. These results demonstrate that the high-performance carbon adsorbent prepared from small precursors via low-temperature carbonization shows great potentials in wastewater treatment. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|