A new double series space derived by factorable matrix and four-dimensional matrix transformations

Autor: Aslıhan ILIKKAN CEYLAN, Canan HAZAR GÜLEÇ
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 11, Pp 30922-30938 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.20241492?viewType=HTML
Popis: In this study, we introduce a new double series space $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $ using the four dimensional factorable matrix $ F $ and absolute summability method for $ k\geq 1 $. Also, examining some algebraic and topological properties of $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $, we show that it is norm isomorphic to the well-known double sequence space $ \mathcal{L}_{k} $ for $ 1\leq k < \infty. $ Furthermore, we determine the $ \alpha $-, $ \beta \left(bp\right) $- and $ \gamma $-duals of the spaces $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $ for $ k\geq 1. $ Additionally, we characterize some new four dimensional matrix transformation classes on double series space $ \left\vert F_{a, b}^{u, \theta }\right\vert _{k} $. Hence, we extend some important results concerned on Riesz and Cesàro matrix methods to double sequences owing to four dimensional factorable matrix.
Databáze: Directory of Open Access Journals