Autor: |
Xingtong Ge, Ling Peng, Yi Yang, Yinda Wang, Deyue Chen, Lina Yang, Weichao Li, Jiahui Chen |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Fire, Vol 7, Iss 4, p 131 (2024) |
Druh dokumentu: |
article |
ISSN: |
2571-6255 |
DOI: |
10.3390/fire7040131 |
Popis: |
This study focuses on constructions that are vulnerable to fire hazards during wildfire events, and these constructions are known as ‘exposures’, which are an increasingly significant area of disaster research. A key challenge lies in estimating dynamically and comprehensively the risk that individuals are exposed to during wildfire spread. Here, ‘exposure risk’ denotes the potential threat to exposed constructions from fires within a future timeframe. This paper introduces a novel method that integrates a spatiotemporal knowledge graph with wildfire spread data and an exposure risk analysis model to address this issue. This approach enables the semantic integration of varied and heterogeneous spatiotemporal data, capturing the dynamic nature of wildfire propagation for precise risk analysis. Empirical tests are employed for the study area of Xichang, Sichuan Province, using real-world data to validate the method’s efficacy in merging multiple data sources and enhancing the accuracy of exposure risk analysis. Notably, this approach also reduces the time complexity from O (m×n×p) to O (m×n). |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|