Autor: |
Yanjun Wang, Yi Tang, Zhicheng Liu, Xingliang Tan, Yuantao Zou, Sihao Luo, Kai Yao |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-51158-9 |
Popis: |
Abstract Tumor inflammation is one of the hallmarks of tumors and is closely related to tumor occurrence and development, providing individualized prognostic prediction. However, few studies have evaluated the relationship between inflammation and the prognosis of bladder urothelial carcinoma (BLCA) patients. Therefore, we constructed a novel inflammation-related prognostic model that included six inflammation-related genes (IRGs) that can precisely predict the survival outcomes of BLCA patients. RNA-seq expression and corresponding clinical data from BLCA patients were downloaded from The Cancer Genome Atlas database. Enrichment analysis was subsequently performed to determine the enrichment of GO terms and KEGG pathways. K‒M analysis was used to compare overall survival (OS). Cox regression and LASSO regression were used to identify prognostic factors and construct the model. Finally, this prognostic model was used to evaluate cell infiltration in the BLCA tumor microenvironment and analyze the effect of immunotherapy in high- and low-risk patients. We established an IRG signature-based prognostic model with 6 IRGs (TNFRSF12A, NR1H3, ITIH4, IL1R1, ELN and CYP26B1), among which TNFRSF12A, IL1R1, ELN and CYP26B1 were unfavorable prognostic factors and NR1H3 and ITIH4 were protective indicators. High-risk score patients in the prognostic model had significantly poorer OS. Additionally, high-risk score patients were associated with an inhibitory immune tumor microenvironment and poor immunotherapy response. We also found a correlation between IRS-related genes and bladder cancer chemotherapy drugs in the drug sensitivity data. The IRG signature-based prognostic model we constructed can predict the prognosis of BLCA patients, providing additional information for individualized prognostic judgment and treatment selection. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|