Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data

Autor: Fayez Tarsha Kurdi, Wijdan Amakhchan, Zahra Gharineiat, Hakim Boulaassal, Omar El Kharki
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Sensors, Vol 23, Iss 17, p 7360 (2023)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s23177360
Popis: The use of a Machine Learning (ML) classification algorithm to classify airborne urban Light Detection And Ranging (LiDAR) point clouds into main classes such as buildings, terrain, and vegetation has been widely accepted. This paper assesses two strategies to enhance the effectiveness of the Deep Learning (DL) classification algorithm. Two ML classification approaches are developed and compared in this context. These approaches utilize the DL Pipeline Network (DLPN), which is tailored to minimize classification errors and maximize accuracy. The geometric features calculated from a point and its neighborhood are analyzed to select the features that will be used in the input layer of the classification algorithm. To evaluate the contribution of the proposed approach, five point-clouds datasets with different urban typologies and ground topography are employed. These point clouds exhibit variations in point density, accuracy, and the type of aircraft used (drone and plane). This diversity in the tested point clouds enables the assessment of the algorithm’s efficiency. The obtained high classification accuracy between 89% and 98% confirms the efficacy of the developed algorithm. Finally, the results of the adopted algorithm are compared with both rule-based and ML algorithms, providing insights into the positioning of DL classification algorithms among other strategies suggested in the literature.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje