Low-resource text classification using cross-lingual models for bullying detection in the ukrainian language

Autor: V. Oliinyk, I. Matviichuk
Jazyk: English<br />Russian<br />Ukrainian
Rok vydání: 2023
Předmět:
Zdroj: Adaptivni Sistemi Avtomatičnogo Upravlinnâ, Vol 1, Iss 42, Pp 87-100 (2023)
Druh dokumentu: article
ISSN: 1560-8956
2522-9575
DOI: 10.20535/1560-8956.42.2023.279093
Popis: The object of research is multilingual models for training on limited datasets. The article reviews multilingual models for training on limited datasets and analyzes their development. Multilingual models are used for many low-resource languages, but Ukrainian is not one of them. The purpose of the work is to increase the effectiveness of text classification in the conditions of a limited set of data in the Ukrainian language by using multilingual models, a zero-shot learning approach i.e. without a target language, and using machine translation to create or augment a dataset. Ref. 24, pic. 5, tabl. 3
Databáze: Directory of Open Access Journals