China’s poverty assessment and analysis under the framework of the UN SDGs based on multisource remote sensing data

Autor: Mengjie Wang, Yanjun Wang, Fei Teng, Shaochun Li, Yunhao Lin, Hengfan Cai
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Geo-spatial Information Science, Pp 1-21 (2022)
Druh dokumentu: article
ISSN: 10095020
1993-5153
1009-5020
DOI: 10.1080/10095020.2022.2108346
Popis: Poverty has always been a global concern that has restricted human development. The first goal (SDG 1) of the United Nations Sustainable Development Goals (SDGs) is to eliminate all forms of poverty all over the world. The establishment of a scientific and effective localized SDG 1 evaluation and monitoring method is the key to achieving SDG 1. This paper proposes SDG 1 China district and county-level localization evaluation method based on multi-source remote sensing data for the United Nations Sustainable Development Framework. The temporal and spatial distribution characteristics of China’s poverty areas and their SDG 1 evaluation values in 2012, 2014, 2016, and 2018 have been analyzed. Based on the SDGs global indicator framework, this paper first constructed SDG 1 China’s district and county localization indicator system and then extracted multidimensional feature factors from nighttime light images, land cover data, and digital elevation model data. Secondly, we establish SDG 1 China’s localized partial least squares estimation model and SDG 1 China’s localized machine learning estimation model. Finally, we analyze and verify the spatiotemporal distribution characteristics of China’s poverty areas and counties and their SDG 1 evaluation values. The results show that SDG 1 China’s district and county localization indicator system proposed in this study and SDG 1 China’s localized partial least squares estimation model can better reflect the poverty level of China’s districts and counties. The estimated model R2 is 0.65, which can identify 72.77% of China’s national poverty counties. From 2012 to 2018, the spatial distribution pattern of SDG evaluation values in China’s districts and counties is that the SDG evaluation values gradually increase from western China to eastern China. In addition, the average SDG 1 evaluation value of China’s districts and counties increased by 23% from 2012 to 2018. This paper is oriented to the United Nations SDGs framework, explores the SDG 1 localized evaluation method of China’s districts and counties based on multisource remote sensing data, and provides a scientific and rapid regional poverty monitoring and evaluation program for the implementation of the 2030 agenda poverty alleviation goals.
Databáze: Directory of Open Access Journals