Understanding COVID-19 propagation: a comprehensive mathematical model with Caputo fractional derivatives for Thailand

Autor: Shamil E, Sayooj Aby Jose, Hasan S. Panigoro, Anuwat Jirawattanapanit, Benjamin I. Omede, Zakaria Yaagoub
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Frontiers in Applied Mathematics and Statistics, Vol 10 (2024)
Druh dokumentu: article
ISSN: 2297-4687
DOI: 10.3389/fams.2024.1374721
Popis: This research introduces a sophisticated mathematical model for understanding the transmission dynamics of COVID-19, incorporating both integer and fractional derivatives. The model undergoes a rigorous analysis, examining equilibrium points, the reproduction number, and feasibility. The application of fixed point theory establishes the existence of a unique solution, demonstrating stability in the model. To derive approximate solutions, the generalized Adams-Bashforth-Moulton method is employed, further enhancing the study's analytical depth. Through a numerical simulation based on Thailand's data, the research delves into the intricacies of COVID-19 transmission, encompassing thorough data analysis and parameter estimation. The study advocates for a holistic approach, recommending a combined strategy of precautionary measures and home remedies, showcasing their substantial impact on pandemic mitigation. This comprehensive investigation significantly contributes to the broader understanding and effective management of the COVID-19 crisis, providing valuable insights for shaping public health strategies and guiding individual actions.
Databáze: Directory of Open Access Journals