Autor: |
Yong-Xin Yao, Niladri Gomes, Feng Zhang, Cai-Zhuang Wang, Kai-Ming Ho, Thomas Iadecola, Peter P. Orth |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
PRX Quantum, Vol 2, Iss 3, p 030307 (2021) |
Druh dokumentu: |
article |
ISSN: |
2691-3399 |
DOI: |
10.1103/PRXQuantum.2.030307 |
Popis: |
We propose a general-purpose, self-adaptive approach to construct a variational wave-function ansatz for highly accurate quantum dynamics simulations based on McLachlan’s variational principle. The key idea is to dynamically expand the variational ansatz along the time-evolution path such that the “McLachlan distance”, which is a measure of the simulation accuracy, remains below a set threshold. We apply this adaptive variational quantum dynamics simulation (AVQDS) approach to the integrable Lieb-Schultz-Mattis spin chain and the nonintegrable mixed-field Ising model, where it captures both finite-rate and sudden post-quench dynamics with high fidelity. The AVQDS quantum circuits that prepare the time-evolved state are much shallower than those obtained from first-order Trotterization and contain up to 2 orders of magnitude fewer cnot gate operations. We envision that a wide range of dynamical simulations of quantum many-body systems on near-term quantum-computing devices will be made possible through the AVQDS framework. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|