Autor: |
Radziah Wahid, Svein Jarle Horn |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Biotechnology for Biofuels, Vol 14, Iss 1, Pp 1-15 (2021) |
Druh dokumentu: |
article |
ISSN: |
1754-6834 |
DOI: |
10.1186/s13068-021-02019-4 |
Popis: |
Abstract Background Biogas can be upgraded to methane biologically by adding H2 to biogas reactors. The process is called biological methanation (BM) and can be done in situ in a regular biogas reactor or the biogas can be transferred to a separate ex situ upgrading reactor. The hybrid BM concept, a combination of in situ and ex situ BM, has received little attention, and only a few studies have been reported. The hybrid BM has the advantage of resolving the issue of pH increment during in situ BM, while the size of the ex situ BM reactor could be reduced. Results In this study, the efficiency of in situ and hybrid biological methanation (BM) for upgrading raw biogas was investigated. The hybrid BM system achieved a CH4 yield of 257 mL gVS −1 when degrading a feedstock blend of manure and cheese waste. This represented an increase in methane yield of 76% when compared to the control reactor with no H2 addition. A 2:1 H2:CO2 ratio resulted in stable reactor performance, while a 4:1 ratio resulted in a high accumulation of volatile fatty acids. H2 consumption rate was improved when a low manure–cheese waste ratio (90%:10%) was applied. Furthermore, feeding less frequently (every 48 h) resulted in a higher CH4 production from CO2 and H2. Methanothermobacter was found to dominate the archaeal community in the in situ BM reactor, and its relative abundance increased over the experimental time. Methanosarcina abundance was negatively affected by H2 addition and was nearly non-existent at the end of the experiment. Conclusions Our results show that hybrid BM outperforms in situ BM in terms of total CH4 production and content of CH4 in the biogas. In comparison to in situ BM, the use of hybrid BM increased CH4 yield by up to 42%. Furthermore, addition of H2 at 2:1 H2:CO2 ratio in in situ BM resulted in stable reactor operation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|