Anisotropic $ (\vec{p}, \vec{q}) $-Laplacian problems with superlinear nonlinearities
Autor: | Eleonora Amoroso, Angela Sciammetta, Patrick Winkert |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Communications in Analysis and Mechanics, Vol 16, Iss 1, Pp 1-23 (2024) |
Druh dokumentu: | article |
ISSN: | 2836-3310 14304767 |
DOI: | 10.3934/cam.2024001?viewType=HTML |
Popis: | In this paper we consider a class of anisotropic $ (\vec{p}, \vec{q}) $-Laplacian problems with nonlinear right-hand sides that are superlinear at $ \pm\infty $. We prove the existence of two nontrivial weak solutions to this kind of problem by applying an abstract critical point theorem under very general assumptions on the data without supposing the Ambrosetti-Rabinowitz condition. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |