Anisotropic $ (\vec{p}, \vec{q}) $-Laplacian problems with superlinear nonlinearities

Autor: Eleonora Amoroso, Angela Sciammetta, Patrick Winkert
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Communications in Analysis and Mechanics, Vol 16, Iss 1, Pp 1-23 (2024)
Druh dokumentu: article
ISSN: 2836-3310
14304767
DOI: 10.3934/cam.2024001?viewType=HTML
Popis: In this paper we consider a class of anisotropic $ (\vec{p}, \vec{q}) $-Laplacian problems with nonlinear right-hand sides that are superlinear at $ \pm\infty $. We prove the existence of two nontrivial weak solutions to this kind of problem by applying an abstract critical point theorem under very general assumptions on the data without supposing the Ambrosetti-Rabinowitz condition.
Databáze: Directory of Open Access Journals