Estimates for the difference between approximate and exact solutions to stochastic differential equations in the G-framework
Autor: | Faiz Faizullah, Ilyas Khan, Mukhtar M. Salah, Ziyad Ali Alhussain |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Journal of Taibah University for Science, Vol 13, Iss 1, Pp 20-26 (2019) |
Druh dokumentu: | article |
ISSN: | 1658-3655 16583655 |
DOI: | 10.1080/16583655.2018.1519884 |
Popis: | This article investigates the Euler-Maruyama approximation procedure for stochastic differential equations in the framework of G-Browinian motion with non-linear growth and non-Lipschitz conditions. The results are derived by using the Burkholder-Davis-Gundy (in short BDG), Hölder's, Doobs martingale's and Gronwall's inequalities. Subject to non-linear growth condition, it is revealed that the Euler-Maruyama approximate solutions are bounded in $ M_G^2([t_0,T];\mathbb {R}^n) $ . In view of non-linear growth and non-uniform Lipschitz conditions, we give estimates for the difference between the exact solution $ Z(t) $ and approximate solutions $ Z^q(t) $ of SDEs in the framework of G-Brownian motion. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |