General Randić indices of a graph and its line graph

Autor: Liang Yan, Wu Baoyindureng
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Open Mathematics, Vol 21, Iss 1, Pp 17-20 (2023)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2022-0611
Popis: For a real number α\alpha , the general Randić index of a graph GG, denoted by Rα(G){R}_{\alpha }\left(G), is defined as the sum of (d(u)d(v))α{\left(d\left(u)d\left(v))}^{\alpha } for all edges uvuv of GG, where d(u)d\left(u) denotes the degree of a vertex uu in GG. In particular, R−12(G){R}_{-\tfrac{1}{2}}\left(G) is the ordinary Randić index, and is simply denoted by R(G)R\left(G). Let α\alpha be a real number. In this article, we show that (1)if α≥0\alpha \ge 0, Rα(L(G))≥2Rα(G){R}_{\alpha }\left(L\left(G))\ge 2{R}_{\alpha }\left(G) for any graph GG with δ(G)≥3\delta \left(G)\ge 3;(2)if α≥0\alpha \ge 0, Rα(L(G))≥Rα(G){R}_{\alpha }\left(L\left(G))\ge {R}_{\alpha }\left(G) for any connected graph GG which is not isomorphic to Pn{P}_{n};(3)if α
Databáze: Directory of Open Access Journals