Optimum Reaction Conditions for the Synthesis of Selenized Ornithogalum caudatum Ait. (Liliaceae) Polysaccharides and Measurement of Their Antioxidant Activity In Vivo

Autor: Renshuang Sun, Zhongyuan Qu, Chenfeng Ji, Xiaolong Yang, Yiqiao Zhang, Xiang Zou
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Molecules, Vol 28, Iss 15, p 5929 (2023)
Druh dokumentu: article
ISSN: 1420-3049
DOI: 10.3390/molecules28155929
Popis: This study determined the optimum reaction conditions for synthesizing selenium-containing polysaccharides. Polysaccharide IIA (with the highest yield) from Ornithogalum caudatum Ait. (Liliaceae) (OCAPIIA) was extracted and purified. Then, three parameters were selected to optimize the synthesis of selenized OCAPIIA (Se-OCAPIIA) using the Box–Behnken design (BBD) and response surface methodology (RSM). The morphology of Se-OCAPIIA was analyzed by scanning electron microscopy (SEM). The characteristic peaks and the monosaccharide composition of Se-OCAPIIA were evaluated by Fourier-transform infrared spectroscopy and gas chromatography. A D-galactose-induced aging mouse model was established, and the in vivo antioxidant activity of Se-OCAPIIA was measured. The optimal conditions for the synthesis of Se-OCAPIIA were as follows: reaction temperature, 72.38 °C; Na2SeO3 to OCAPIIA mass ratio, 0.93 g/g; and reaction time, 8.05 h. The selenium content of Se-OCAPIIA obtained using the optimized process was 3.131 ± 0.090 mg/g, close to the maximum predicted value (3.152 mg/g). Se-OCAPIIA contained D-mannose, D-glucose, and D-galactose at a molar ratio of 1.00:0.34:0.88. SEM showed that Se-OCAPIIA was spherical and flocculated. Compared with OCAPIIA, Se-OCAPIIA exhibited two characteristic peaks at 833 and 610 cm−1 in the infrared spectrum. Se-OCAPIIA increased catalase, glutathione peroxidase, and superoxide dismutase activities and decreased MDA concentrations in the mouse liver. Moreover, Se-OCAPIIA treatment improved liver morphology, decreased the levels of IL-1β and IL-6, and increased IL-10 concentration. In conclusion, the synthesis of Se-OCAPIIA is effective, simple, and feasible. Se-OCAPIIA demonstrated high antioxidant activity in vivo and is a promising antioxidant and therapeutic agent.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje