Advanced fusion of MTM-LSTM and MLP models for time series forecasting: An application for forecasting the solar radiation

Autor: Mahin Mohammadi, Saman Jamshidi, Alireza Rezvanian, Mehdi Gheisari, Ajay Kumar
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Measurement: Sensors, Vol 33, Iss , Pp 101179- (2024)
Druh dokumentu: article
ISSN: 2665-9174
DOI: 10.1016/j.measen.2024.101179
Popis: Accurate time series forecasting has become increasingly important across various domains such as finance, energy, and medicine. This study introduces an innovative hybrid model that leverages the power of neural networks, precisely Many To Many LSTM (MTM LSTM) and Multilayer Perceptron (MLP), to improve time series forecasting accuracy. In this new combination, we trained network MTM LSTM to approximate the target at each step, and finally, we used network MLP to combine these approximations. To perform the evaluation, we made a forecast for the amount of solar energy radiation in the city of Mashhad, Iran. The experiment results concerning MSE and MAE showed that the proposed method with five lags outperforms the standard models.We hypothesize that MTM LSTM can effectively capture solar radiation's intricate temporal dependencies and nonlinearity. At the same time, MLP can enhance function approximation by modeling complex interactions, resulting in improved forecast accuracy. By employing the hybrid MTM LSTM and MLP model, we achieved improved accuracy in predicting solar energy radiation, which has significant implications for the renewable energy sector and its energy management and planning applications. This research advances time series forecasting techniques, highlighting the effectiveness of combining neural networks to address complex and dynamic patterns in time-dependent data.Overall, our findings underscore the potential and efficacy of the proposed hybrid model as a robust tool for accurate time series forecasting in various domains, supporting effective decision-making and planning processes.
Databáze: Directory of Open Access Journals