Preparation of a novel foamed concrete modified with carbon fiber and graphite: Mechanical, electro-magnetic and microstructural characteristics based on X-CT

Autor: Qin-chuan Tu, Qing-hui Xia, Yao Lu, Ying-hua Bai
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Heliyon, Vol 10, Iss 11, Pp e31665- (2024)
Druh dokumentu: article
ISSN: 2405-8440
DOI: 10.1016/j.heliyon.2024.e31665
Popis: In this paper, foam concrete is modified using graphite and carbon fiber as absorbents. The mechanical properties are analyzed in conjunction with hydration products, pore size distribution based on XCT test. Additionally, the resistivity, complex permittivity and complex permeability are tested. The results demonstrate that carbon fiber enhances the proportion of pores with diameters less than 200 μm in foam concrete, thereby significantly enhancing its flexural strength. Furthermore, incorporating graphite helps offset the initial retardation of sulfoaluminate cement hydration induced by carbon fibers, leading to an increase in the average pore size and a reduction in compressive strength. The incorporation of carbon fibers at a concentration of 0.6 wt% achieves the percolation threshold, akin to scenarios with singular fiber incorporation. Exceeding 2 wt% graphite content results in negligible influence on the conductivity. The synergistic integration of graphite and carbon fibers significantly improves the electromagnetic wave absorption performance of the composite. At a thickness of 6 mm, the material exhibits an effective bandwidth where the reflection loss is less than −10 dB, extending up to 2.5 GHz, which constitutes 52.08 % of the tested frequency spectrum.
Databáze: Directory of Open Access Journals