Autor: |
A. A. Tarusov, K. A. Ushakov, M. A. Vasiliev |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Journal of High Energy Physics, Vol 2023, Iss 3, Pp 1-22 (2023) |
Druh dokumentu: |
article |
ISSN: |
1029-8479 |
DOI: |
10.1007/JHEP03(2023)128 |
Popis: |
Abstract Analysis of the first-order corrections to higher-spin equations is extended to homotopy operators involving shift parameters with respect to the spinor Y variables, the argument of the higher-spin connection ω(Y) and the argument of the higher-spin zero-form C(Y). It is shown that a relaxed uniform (y + p)-shift and a shift by the argument of ω(Y) respect the proper form of the free higher-spin equations and constitute a one-parametric class of vertices that contains those resulting from the conventional (no shift) homotopy. A pure shift by the argument of ω(Y) is shown not to affect the one-form higher-spin field W in the first order and, hence, the form of the respective vertices. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|