Quasi-homologous evolution of self-gravitating systems with vanishing complexity factor
Autor: | L. Herrera, A. Di Prisco, J. Ospino |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | European Physical Journal C: Particles and Fields, Vol 80, Iss 7, Pp 1-14 (2020) |
Druh dokumentu: | article |
ISSN: | 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-020-8202-5 |
Popis: | Abstract We investigate the evolution of self-gravitating either dissipative or non-dissipative systems satisfying the condition of minimal complexity, and whose areal radius velocity is proportional to the areal radius (quasi-homologous condition). Several exact analytical models are found under the above mentioned conditions. Some of the presented models describe the evolution of spherically symmetric dissipative fluid distributions whose center is surrounded by a cavity. Some of them satisfy the Darmois conditions whereas others present shells and must satisfy the Israel condition on either one or both boundary surfaces. Prospective applications of some of these models to astrophysical scenarios are discussed. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |