Zero-stability of waveform relaxation methods for ordinary differential equations

Autor: Zhencheng Fan
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Electronic Research Archive, Vol 30, Iss 3, Pp 1126-1141 (2022)
Druh dokumentu: article
ISSN: 2688-1594
DOI: 10.3934/era.2022060?viewType=HTML
Popis: Zero-stability is the basic property of numerical methods of ordinary differential equations (ODEs). Little work on zero-stability is obtained for the waveform relaxation (WR) methods, although it is an important numerical method of ODEs. In this paper we present a definition of zero-stability of WR methods and prove that several classes of WR methods are zero-stable under the Lipschitz conditions. Also, some numerical examples are given to outline the effectiveness of the developed results.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje