Optimizing the Muffler of a Portable Lawn Mower Engine to reduce Noise Pollution Levels

Autor: Sh Sedighi, D Kalantari, J Rédl
Jazyk: English<br />Persian
Rok vydání: 2021
Předmět:
Zdroj: Journal of Agricultural Machinery, Vol 11, Iss 2, Pp 359-369 (2021)
Druh dokumentu: article
ISSN: 2228-6829
2423-3943
DOI: 10.22067/jam.v11i2.84829
Popis: IntroductionThe most important adverse effects of noise on humans have reduced work efficiency and physiological damaging effects such as increased heart rate, high blood pressure, permanent and temporary hearing loss, impaired vision, disrupting the body's balance system, causing nervous disorders and even nervous disorders. Much of the occupational disturbance is due to acoustic vibrations in agricultural mechanization, which is affecting a large number of farmers. In this regard, most of the noise and vibration come from two-stroke or four-stroke engines that are used in lawn mowers, sprayers, pits and more. These high-vibration equipment causes a great deal of damage to their operators. Portable lawn mowers are popular for working in urban and rural areas due to their low cost, low maintenance cost, high maneuverability and affordability. Therefore, the possibility of optimizing the muffler of a small combustion engine for a lawn mower was investigated and studied in the present stud.Materials and MethodsTo optimize the existing muffler, geometry of the factory muffler was first redesigned in solidworks 2014 software. Then the optimized muffler, along with the factory muffler exported into ANSYS CFX software and simulated in terms of velocity and pressure distributions. To evaluate the built muffler and compare its performance with the factory standard muffler, the mufflers were then mounted on a DOMA’s lawnmower model WPGD501 with a 42 cm3 engine volume and tested outdoors in a radius of 5 m. All sound recording tests were performed in steady state at a distance of 1m with a 45° angle and position along the exhaust outlet to reconstruct the user's ear position. A digital thermometer TEM-8820 and a PSA-V01 digital barometer were used to measure the sound pressure and an environment temperature.Results and DiscussionThe results showed that at 3000 rpm, the sound pressure level of the modified muffler decreased by 6.4% compared to the modified muffler. The same decrease in sound pressure level was achieved at 5000 rpm, equal to 4.5%. The results of this study showed that with increasing engine speed, pressure changes in the muffler had an upward trend. These changes in the modified muffler increased by 0.02 kPa at 3000 rpm and by 0.07 kPa at 5000 rpm. According to the outputs of the FFT diagrams, the intensity and amplitude of the output frequencies from the modified muffler significantly decreased almost at most frequencies. Therefore, effective pressure difference (ΔPrms) was used for the further investigations. The results of this study showed that the pressure changes in the muffler had an upward trend with increasing the engine speed. These changes in the modified muffler increased by 0.02 kPa at 3000 rpm and by 0.07 kPa at 5000 rpm.ConclusionsAccording to the results of the present study, by optimizing the internal muffler geometry of the lawn-mowers by installing internal blades and neutralizing the sound intensity inside the muffler, it is possible to reduce the sound pressure level by 4% to about 7% over the original muffler. It is a very simple and inexpensive method for the manufacturers of such engines.
Databáze: Directory of Open Access Journals