Autor: |
Guocai Chen, Xueliang Wang, Nan Zhao, Zhentao Jiang, Fei Li, Haozheng Chen, Pengyu Wei, Tao Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Marine Science and Engineering, Vol 12, Iss 9, p 1482 (2024) |
Druh dokumentu: |
article |
ISSN: |
2077-1312 |
DOI: |
10.3390/jmse12091482 |
Popis: |
The box girder’s condition significantly impacts the safety and overall performance of the entire ship because it is the primary stress component of the hull construction. This work used experimental research on the long-span hull box girder based on IFEM (Inverse Finite Element Method) technology to ensure the structural safety of the hull box girder. Due to the limitations of conventional experiments in this technical field, such as their reliance on finite element data and lack of input from physical tests, numerous research methods combining the strain sensing data from physical tests with the strain data from virtual sensors were conducted. The strain fields of the top plate, side plate, and bottom plate were each reconstructed in turn, and the verifier measuring points in the physical model test were used to assess the accuracy of the reconstruction results. The findings demonstrate that the top plate, side plate, and bottom plate reconstructions had relative errors of 0.24–7.86%, 0.75–8.13%, and 3.31–2.52%, respectively. This enables the reconstruction of the strain field of the long-span hull box girder using physical test data and promotes the use of iFEM technology in the field of structural health monitoring of large marine structures. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|