Popis: |
Tumour progression is accompanied by rapid cell proliferation, loss of differentiation, the reprogramming of energy metabolism, loss of adhesion, escape of immune surveillance, induction of angiogenesis, and metastasis. Both coding and regulatory RNAs expressed by tumour cells and circulating in the blood are involved in all stages of tumour progression. Among the important tumour-associated RNAs are intracellular coding RNAs that determine the routes of metabolic pathways, cell cycle control, angiogenesis, adhesion, apoptosis and pathways responsible for transformation, and intracellular and extracellular non-coding RNAs involved in regulation of the expression of their proto-oncogenic and oncosuppressing mRNAs. Considering the diversity/variability of biological functions of RNAs, it becomes evident that extracellular RNAs represent important regulators of cell-to-cell communication and intracellular cascades that maintain cell proliferation and differentiation. In connection with the elucidation of such an important role for RNA, a surge in interest in RNA-degrading enzymes has increased. Natural ribonucleases (RNases) participate in various cellular processes including miRNA biogenesis, RNA decay and degradation that has determined their principal role in the sustention of RNA homeostasis in cells. Findings were obtained on the contribution of some endogenous ribonucleases in the maintenance of normal cell RNA homeostasis, which thus prevents cell transformation. These findings directed attention to exogenous ribonucleases as tools to compensate for the malfunction of endogenous ones. Recently a number of proteins with ribonuclease activity were discovered whose intracellular function remains unknown. Thus, the comprehensive investigation of physiological roles of RNases is still required. In this review we focused on the control mechanisms of cell transformation by endogenous ribonucleases, and the possibility of replacing malfunctioning enzymes with exogenous ones. |