Perturbed Li–Yorke homoclinic chaos
Autor: | Marat Akhmet, Michal Fečkan, Mehmet Onur Fen, Ardak Kashkynbayev |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Electronic Journal of Qualitative Theory of Differential Equations, Vol 2018, Iss 75, Pp 1-18 (2018) |
Druh dokumentu: | article |
ISSN: | 1417-3875 78640458 |
DOI: | 10.14232/ejqtde.2018.1.75 |
Popis: | It is rigorously proved that a Li–Yorke chaotic perturbation of a system with a homoclinic orbit creates chaos along each periodic trajectory. The structure of the chaos is investigated, and the existence of infinitely many almost periodic orbits out of the scrambled sets is revealed. Ott–Grebogi–Yorke and Pyragas control methods are utilized to stabilize almost periodic motions. A Duffing oscillator is considered to show the effectiveness of our technique, and simulations that support the theoretical results are depicted. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |