Quantization of Integrable and Chaotic Three-Particle Fermi–Pasta–Ulam–Tsingou Models

Autor: Alio Issoufou Arzika, Andrea Solfanelli, Harald Schmid, Stefano Ruffo
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Entropy, Vol 25, Iss 3, p 538 (2023)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e25030538
Popis: We study the transition from integrability to chaos for the three-particle Fermi–Pasta–Ulam–Tsingou (FPUT) model. We can show that both the quartic β-FPUT model (α=0) and the cubic one (β=0) are integrable by introducing an appropriate Fourier representation to express the nonlinear terms of the Hamiltonian. For generic values of α and β, the model is non-integrable and displays a mixed phase space with both chaotic and regular trajectories. In the classical case, chaos is diagnosed by the investigation of Poincaré sections. In the quantum case, the level spacing statistics in the energy basis belongs to the Gaussian orthogonal ensemble in the chaotic regime, and crosses over to Poissonian behavior in the quasi-integrable low-energy limit. In the chaotic part of the spectrum, two generic observables obey the eigenstate thermalization hypothesis.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje