Condition Monitoring of Sensors in a NPP Using Optimized PCA
Autor: | Wei Li, Minjun Peng, Yongkuo Liu, Shouyu Cheng, Nan Jiang, Hang Wang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Science and Technology of Nuclear Installations, Vol 2018 (2018) |
Druh dokumentu: | article |
ISSN: | 1687-6075 1687-6083 |
DOI: | 10.1155/2018/7689305 |
Popis: | An optimized principal component analysis (PCA) framework is proposed to implement condition monitoring for sensors in a nuclear power plant (NPP) in this paper. Compared with the common PCA method in previous research, the PCA method in this paper is optimized at different modeling procedures, including data preprocessing stage, modeling parameter selection stage, and fault detection and isolation stage. Then, the model’s performance is greatly improved through these optimizations. Finally, sensor measurements from a real NPP are used to train the optimized PCA model in order to guarantee the credibility and reliability of the simulation results. Meanwhile, artificial faults are sequentially imposed to sensor measurements to estimate the fault detection and isolation ability of the proposed PCA model. Simulation results show that the optimized PCA model is capable of detecting and isolating the sensors regardless of whether they exhibit major or small failures. Meanwhile, the quantitative evaluation results also indicate that better performance can be obtained in the optimized PCA method compared with the common PCA method. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |