NeutroAlgebra of Idempotents in Group Rings

Autor: Vasantha Kandasamy, Ilanthenral Kandasamy
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Neutrosophic Sets and Systems, Vol 50, Pp 156-177 (2022)
Druh dokumentu: article
ISSN: 2331-6055
2331-608X
DOI: 10.5281/zenodo.6774690
Popis: In this paper, the authors study the new concept of NeutroAlgebra of idempotents in group rings. It is assumed that RG is the group ring of a group G over the ring R. R should be a commutative ring with unit 1. G can be a finite or an infinite order group which can be commutative or non-commutative. We obtain conditions under which the idempotents of the group rings ZG, ZnG, and QG form a NeutroAlgebra under the operations + or ×. Some collection of idempotents in these group rings form an AntiAlgebra. We propose some open problems which has resulted from this study.
Databáze: Directory of Open Access Journals