NeutroAlgebra of Idempotents in Group Rings
Autor: | Vasantha Kandasamy, Ilanthenral Kandasamy |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Neutrosophic Sets and Systems, Vol 50, Pp 156-177 (2022) |
Druh dokumentu: | article |
ISSN: | 2331-6055 2331-608X |
DOI: | 10.5281/zenodo.6774690 |
Popis: | In this paper, the authors study the new concept of NeutroAlgebra of idempotents in group rings. It is assumed that RG is the group ring of a group G over the ring R. R should be a commutative ring with unit 1. G can be a finite or an infinite order group which can be commutative or non-commutative. We obtain conditions under which the idempotents of the group rings ZG, ZnG, and QG form a NeutroAlgebra under the operations + or ×. Some collection of idempotents in these group rings form an AntiAlgebra. We propose some open problems which has resulted from this study. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |