Mechanical Properties of Post-Filling Coarse Aggregate Concrete under Biaxial Tension–Compression

Autor: Jinqing Jia, Lu Li, Wei Liu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Buildings, Vol 14, Iss 1, p 203 (2024)
Druh dokumentu: article
ISSN: 2075-5309
DOI: 10.3390/buildings14010203
Popis: Post-filling coarse aggregate concrete (PFCC) is a new type of concrete that achieves energy-saving and emission-reduction goals through optimizing material proportions. The post-filled coarse aggregates can save the amount of cement material used, improve the strength and elastic modulus, prolong the service life of the material, and reduce expenses. We conducted a biaxial tension–compression test on PFCC cubic specimens, analyzed the strength and stress–strain curve regularity under different post-filling ratios (PFRs) and stress ratios, and proposed a new failure criterion suitable for PFCC. The results demonstrated that the tensile strength and compressive strength of each post-filling ratio concrete specimen under biaxial tension–compression action are lower than its uniaxial tensile and uniaxial compressive strength under the same post-filling ratio. Under the same stress ratio, the variation pattern of the post-filling ratio was the same as that under uniaxial stress, with the maximum value occurring at a PFR of 20%. The strength change rule was affected by both the stress ratio and the post-filling ratio. From the stress–strain curve, it can be seen that the presence of tensile stress significantly reduces the stiffness and ductility of PFCC under biaxial tensile and compressive loading. The strain corresponding to the peak strength of the σ3/fc-ε3 curve was much smaller than the peak strain under uniaxial compression. For example, at a stress ratio of (0.05:1), the strain ε3 in the compression direction was on average about 50% to 60% of the uniaxial compression strain under the same PFR. The stress–strain curve of PFCC under biaxial tensile and compressive loading was approximately linear throughout the loading process. A failure criterion for PFCC under biaxial tension–compression loading was established, and the calculated values agreed well with the test values. This paper provides references and research data for the study of PFCC under complex stress conditions.
Databáze: Directory of Open Access Journals