Experimental studies on hydrodynamic aspects for mixing of non-Newtonian fluids in a Komax static mixer
Autor: | Revathi D., Saravanan K. |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Chemical Industry and Chemical Engineering Quarterly, Vol 26, Iss 4, Pp 329-335 (2020) |
Druh dokumentu: | article |
ISSN: | 1451-9372 2217-7434 |
DOI: | 10.2298/CICEQ191017009R |
Popis: | Mixing is the degree of homogeneity of two or more phases and it plays a vital role in the quality of the final product. It is conventionally carried out by mechanical agitators or by static mixers. Static mixers are a series of geometric mixing elements fixed within a pipe, which use the energy of the flow stream to create mixing between two or more fluids or to inject metered liquid into a continuous process. The objective of this work is to predict hydrodynamic aspects of the static mixer designed. The mixing performance of a Komax static mixer has been determined for the blending of non-Newtonian fluid streams with identical or different rheology by using experimental study. The energy needed for mixing comes from the force created by the liquid due to turbulence and the geometry of the static mixer. Pressure drop in the static mixer depends strongly on the geometric arrangement of the inserts, properties of fluids to be mixed and flow conditions. Hence, pressure drop studies are carried out for different flow rates of fluids with different concentrations of two non-Newtonian fluids. Starch and xanthan gum solutions are used as working fluids. It is observed from the experimental results that the pressure drop per unit length increases as the fluid flow rate increases, and the nature of fluid flow varies with the velocity of the fluids. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |