Autor: |
Lanlan Bai, Tetsuya Tani, Takeshi Kobayashi, Ryotaro Nouda, Yuta Kanai, Yusuke Sano, Kazutoshi Takami, Hiroshi Tomita, Eriko Sugano, Taku Ozaki, Tohru Kiyono, Tomokazu Fukuda |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
FEBS Open Bio, Vol 14, Iss 4, Pp 598-612 (2024) |
Druh dokumentu: |
article |
ISSN: |
2211-5463 |
DOI: |
10.1002/2211-5463.13781 |
Popis: |
The Egyptian Rousettus bat (Rousettus aegyptiacus) is a common fruit bat species that is distributed mainly in Africa and the Middle East. Bats serve as reservoir hosts for numerous pathogens. Human activities, such as hunting bats for food, managing vermin, and causing habitat loss, elevate the likelihood of transmission of bat pathogens to humans and other animals. Consequently, bat cell lines play a crucial role as research materials for investigating viral pathogens. However, the inherent limitation of finite cell division in primary cells necessitates the use of immortalized cells derived from various bat tissues. Herein, we successfully established six fibroblast cell lines derived from an infant bat heart and lungs and an elderly bat heart. Three of the six cell lines, called K4DT cells, were transduced by a combination of cell cycle regulators, mutant cyclin‐dependent kinase 4, cyclin D1, and human telomerase reverse transcriptase. The other three cell lines, named SV40 cells, were transfected with simian virus 40 large T antigen. Transgene protein expression was detected in the transduced cells. All three K4DT cell lines and one lung‐derived SV40 cell line were virtually immortalized and nearly maintained the normal diploid karyotypes. However, the two other heart‐derived SV40 cell lines had aberrant karyotypes and the young bat‐derived cell line stopped proliferating at approximately 40 population doublings. These bat cell lines are valuable for studying pathogen genomics and biology. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|