Improved Environmental Stimulus and Biological Competition Tactics Interactive Artificial Ecological Optimization Algorithm for Clustering

Autor: Wenyan Guo, Mingfei Wu, Fang Dai, Yufan Qiang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Biomimetics, Vol 8, Iss 2, p 242 (2023)
Druh dokumentu: article
ISSN: 2313-7673
DOI: 10.3390/biomimetics8020242
Popis: An interactive artificial ecological optimization algorithm (SIAEO) based on environmental stimulus and a competition mechanism was devised to find the solution to a complex calculation, which can often become bogged down in local optimum because of the sequential execution of consumption and decomposition stages in the artificial ecological optimization algorithm. Firstly, the environmental stimulus defined by population diversity makes the population interactively execute the consumption operator and decomposition operator to abate the inhomogeneity of the algorithm. Secondly, the three different types of predation modes in the consumption stage were regarded as three different tasks, and the task execution mode was determined by the maximum cumulative success rate of each individual task execution. Furthermore, the biological competition operator is recommended to modify the regeneration strategy so that the SIAEO algorithm can provide consideration to the exploitation in the exploration stage, break the equal probability execution mode of the AEO, and promote the competition among operators. Finally, the stochastic mean suppression alternation exploitation problem is introduced in the later exploitation process of the algorithm, which can tremendously heighten the SIAEO algorithm to run away the local optimum. A comparison between SIAEO and other improved algorithms is performed on the CEC2017 and CEC2019 test set.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje