Artificial intelligence model for analyzing colonic endoscopy images to detect changes associated with irritable bowel syndrome.

Autor: Kazuhisa Tabata, Hiroshi Mihara, Sohachi Nanjo, Iori Motoo, Takayuki Ando, Akira Teramoto, Haruka Fujinami, Ichiro Yasuda
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: PLOS Digital Health, Vol 2, Iss 2, p e0000058 (2023)
Druh dokumentu: article
ISSN: 2767-3170
DOI: 10.1371/journal.pdig.0000058
Popis: IBS is not considered to be an organic disease and usually shows no abnormality on lower gastrointestinal endoscopy, although biofilm formation, dysbiosis, and histological microinflammation have recently been reported in patients with IBS. In this study, we investigated whether an artificial intelligence (AI) colorectal image model can identify minute endoscopic changes, which cannot typically be detected by human investigators, that are associated with IBS. Study subjects were identified based on electronic medical records and categorized as IBS (Group I; n = 11), IBS with predominant constipation (IBS-C; Group C; n = 12), and IBS with predominant diarrhea (IBS-D; Group D; n = 12). The study subjects had no other diseases. Colonoscopy images from IBS patients and from asymptomatic healthy subjects (Group N; n = 88) were obtained. Google Cloud Platform AutoML Vision (single-label classification) was used to construct AI image models to calculate sensitivity, specificity, predictive value, and AUC. A total of 2479, 382, 538, and 484 images were randomly selected for Groups N, I, C and D, respectively. The AUC of the model discriminating between Group N and I was 0.95. Sensitivity, specificity, positive predictive value, and negative predictive value of Group I detection were 30.8%, 97.6%, 66.7%, and 90.2%, respectively. The overall AUC of the model discriminating between Groups N, C, and D was 0.83; sensitivity, specificity, and positive predictive value of Group N were 87.5%, 46.2%, and 79.9%, respectively. Using the image AI model, colonoscopy images of IBS could be discriminated from healthy subjects at AUC 0.95. Prospective studies are needed to further validate whether this externally validated model has similar diagnostic capabilities at other facilities and whether it can be used to determine treatment efficacy.
Databáze: Directory of Open Access Journals