Epidemic Models with Varying Infectivity on a Refining Spatial Grid—I—The SI Model

Autor: Anicet Mougabe-Peurkor, Étienne Pardoux, Ténan Yeo
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 18, p 2826 (2024)
Druh dokumentu: article
ISSN: 12182826
2227-7390
DOI: 10.3390/math12182826
Popis: We consider a space–time SI epidemic model with infection age dependent infectivity and non-local infections constructed on a grid of the torus Td=[0,1)d, where the individuals may migrate from node to node. The migration processes in either of the two states are assumed to be Markovian. We establish a functional law of large numbers by letting the initial approximate number of individuals on each node, N, to go to infinity and the mesh size of the grid, ε, to go to zero jointly. The limit is a system of parabolic PDE/integral equations. The constraint on the speed of convergence of the parameters N and ε is that Nεd→∞ as (N,ε)→(+∞,0).
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje