Autor: |
Xin Ding, Qiao Lin, Mengjie Wang, Shen Liu, Weiguan Zhang, Nan Chen, Yiping Wang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Sensors, Vol 24, Iss 18, p 6118 (2024) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s24186118 |
Popis: |
A novel surface plasmon resonance (SPR) refractive index (RI) sensor based on the D-type dual-mode photonic crystal fiber (PCF) is proposed. The sensor employs a side-polished few-mode PCF that facilitates the transmission of the fundamental and second-order modes, with an integrated microfluidic channel positioned directly above the fiber core. This design minimizes the distance to the analyte and maximizes the interaction between the optical field and the analyte, thereby enhancing the SPR effect and resonance loss for improved sensing performance. Au-TiO2 dual-layer material was coated on the surface of a microfluidic channel to enhance the penetration depth of the core evanescent field and tune the resonance wavelength to the near-infrared band, meeting the special needs of chemical and biomedical detection fields. The finite element method was utilized to systematically investigate the coupling characteristics between various modes and surface plasmon polariton (SPP) modes, as well as the impact of structural parameters on the sensor performance. The results indicate that the LP11b_y mode exhibits greater wavelength sensitivity than the HE11_y mode, with a maximum sensitivity of 33,000 nm/RIU and an average sensitivity of 8272.7 nm/RIU in the RI sensing range of 1.25–1.36, which is higher than the maximum sensitivity of 16,000 nm/RIU and average sensitivity of 5666.7 nm/RIU for the HE11b_y mode. It is believed that the proposed PCF-SPR sensor features both high sensitivity and high resolution, which will become a critical device for wide RI detection in mid-infrared fields. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|