Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 1-(1,3-benzothiazol-2-yl)-3-(2-hydroxyethyl)imidazolidin-2-one
Autor: | Mohamed Srhir, Nada Kheira Sebbar, Tuncer Hökelek, Ahmed Moussaif, Joel T. Mague, Noureddine Hamou Ahabchane, El Mokhtar Essassi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Acta Crystallographica Section E: Crystallographic Communications, Vol 76, Iss 3, Pp 370-376 (2020) |
Druh dokumentu: | article |
ISSN: | 2056-9890 20569890 |
DOI: | 10.1107/S2056989020001723 |
Popis: | In the title molecule, C12H13N3O2S, the benzothiazine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy...NThz hydrogen bonds and weak C—HImdz...OImdz and C—HBnz...OImdz (Hydethy = hydroxyethyl, Thz = thiazole, Imdz = imidazolidine and Bnz = benzene) interactions, together with C—HImdz...π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] interactions between thiazole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (47.0%), H...O/O...H (16.9%), H...C/C...H (8.0%) and H...S/S...H (7.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H...N and C—H...O hydrogen-bond energies are 68.5 (for O—HHydethy...NThz), 60.1 (for C—HBnz...OImdz) and 41.8 kJ mol−1 (for C—HImdz...OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |