Redirecting pantoprazole as a metallo-beta-lactamase inhibitor in carbapenem-resistant Klebsiella pneumoniae

Autor: Wesam H. Abdulaal, Nabil A. Alhakamy, Amer H. Asseri, Mohamed F. Radwan, Tarek S. Ibrahim, Solomon Z. Okbazghi, Hisham A. Abbas, Basem Mansour, Aly A. Shoun, Wael A. H. Hegazy, Mahmoud Saad Abdel-Halim
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Frontiers in Pharmacology, Vol 15 (2024)
Druh dokumentu: article
ISSN: 1663-9812
DOI: 10.3389/fphar.2024.1366459
Popis: The development of resistance to carbapenems in Klebsiella pneumoniae due to the production of metallo-β-lactamases (MBLs) is a critical public health problem because carbapenems are the last-resort drugs used for treating severe infections of extended-spectrum β-lactamases (ESBLs) producing K. pneumoniae. Restoring the activity of carbapenems by the inhibition of metallo-β-lactamases is a valuable approach to combat carbapenem resistance. In this study, two well-characterized clinical multidrug and carbapenem-resistant K. pneumoniae isolates were used. The sub-inhibitory concentrations of pantoprazole and the well-reported metallo-β-lactamase inhibitor captopril inhibited the hydrolytic activities of metallo-β-lactamases, with pantoprazole having more inhibiting activities. Both drugs, when used in combination with meropenem, exhibited synergistic activities. Pantoprazole could also downregulate the expression of the metallo-β-lactamase genes blaNDM and blaVIM. A docking study revealed that pantoprazole could bind to and chelate zinc ions of New Delhi and Verona integron-encoded MBL (VIM) enzymes with higher affinity than the control drug captopril and with comparable affinity to the natural ligand meropenem, indicating the significant inhibitory activity of pantoprazole against metallo-β-lactamases. In conclusion, pantoprazole can be used in combination with meropenem as a new strategy for treating serious infections caused by metallo-β-lactamases producing K. pneumoniae.
Databáze: Directory of Open Access Journals